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A class of one-dimensional inverse scattering problems are studied with the goal of 
reconstructing (say) propagation speed to moderate accuracy as inexpensively as possible. 
Three alternatives are discussed all starting from a change to the “travel-time” variable and 
converting the problem to integral equation form. The approaches are compared with regard 
to their economy of use and the problems for which they are effective. Several numerical 
examples illustrate these comparisons. 

I. INTRODUCTION 

We will be considering one-dimensional inverse problems of the form 

2 

Y”(X) + j$ Y(X) = 0, 

y’(0) + -g Y(0) = 2k0, 

Y’(x) - --& Y(x) = 07 

(1’) 

where X< co. The goal is to reconstruct the unknown (say) velocity u from certain 
data prescribed at a set of w values. The real parameter w arises from an earlier 
Fourier transform of the original wave equation. 

Similar problems have been studied by Gray [ 1,2], Hagin [2,3], Chen and Tsien 
[4] and others. Our purpose here is to investigate the computational feasibility of 
some of these ideas and, in addition, to introduce another alternative (Section III) 
that in some cases is very attractive. 

In [l] the “travel time” variable change was shown to be effective in certain 
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ONE-DIMENSIONAL INVERSE PROBLEMS 17 

instances. Our investigations have confirmed that this is in general a good starting 
point; so we define 

5 = I x ds/v(s) 
0 

as our new independent variable and let U(7) = y(x) and c(t) = v(x). The boundary 
value problem now becomes 

u" - c'/c u' + fdU(7) = 0, 

u’(0) + km(O) = c(0) 2i0, (1) 

u’(T) - ioU(T) = 0, 

where T = r(X) < co. Since we will soon truncate (if necessary) and discretize for 
numerical computations, let us assume that T < 00. For convenience we will assume 
that both T = 1 and c(O) = 1 (which could be accomplished by scaling; see the 
discussion at the end of this section). Finally, it will be convenient to have the 
differential equation in self-adjoint form, and this leads to the statement 

(u’/c)l + w’u/c = Lu = 0, 

[u’ + iwU](O) = 2iw, [u’ -ion](l) = 0. 
(2) 

A central notion is that of an “incident wave,” denoted herein by Ui. For example, 
our problem could be interpreted as the result of wave ui = eiwr moving in from the 
region t < 0 in which the medium has constant propagation velocity c = 1. More 
generally, from our viewpoint Ui will denote some first approximation to the solution 
u(r; w) of (2) in which ui does satisfy the boundary conditions. 

To obtain an integral equation for the unknown c we proceed as follows. Applying 
the Lagrange identity to (2), using the fact Lu = 0, and defining u, = u - ui we obtain 

j’ (ULUi - UiLU) = jf ULUi = Jo1 (Ui + U,) LUi 
0 

= [uu: - U’Ui]A = -2iwu,(O; w). (3) 

The values u,(O; w) for some w set are our data and will be assumed known for the w 
values of our choice. This integral equation for c is still not convenient since it 
involves the unknown u or u, (although in Section IV we will attack it via iteration). 
The problem is much more manageable if we are justified in assuming that u, is small 
in comparison to u1 so that the u, part of (3) can be dropped to obtain 

J 
.l 

UiLUi = -2icuu,(O; co). (4) 
0 
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In (4), ui will be a known estimate and Lui will involve the unknown c; thus we 
obtain a linear integral equation for c. In the next two sections we turn to two natural 
selections for ui; eiwT and tiei”“. We shall see that if c’/c is relatively small, the 
first of these leads to an exceptionally inexpensive method for reconstructing c (as in 
[ 1 I). If c’/c is not small enough then ui = eiwr is not an adequate estimate for u and 
hence the neglected U, term in (3) is significant. In Section III we show that in this 
case, and if c is sufficiently well-behaved, the WKB approximate fieiwz is a prac- 
tical choice which leads to a fairly inexpensive algorithm for reconstructing c. 
Finally, in Section IV we turn to the more general situation in which we return to (3) 
and through iteration involve the U, term neglected in (4). Although this process is 
considerably more expensive than the earlier alternatives, it is certainly not 
prohibitive; moreover, it is probably unavoidable in many problems. 

Before proceeding to our first approach to reconstructing c, we comment on the 
practicality of assuming in (1) that T = r(X) and c(0) can be normalized to one. In 
many applications r = 0, or x = 0, represents the “surface” of observation, in which 
case c(0) is known. It is then a simple matter to define, say, F= c/c(O) in (1) to make 
F(O) = 1. 

The T = 1 scaling is a bit more subtle. Note that the boundary condition at 7 = T 
in (l), or x = X in (l’), can be viewed as assuming that the wave is “right going,” i.e., 
z4(7)=Aeior for 7 > T. Physically this suggests that no reflections occur from the 
region 7 > T, i.e., c(7) = c(T) for t > T. An alternate explanation is: if T is sufficiently 
large then reflections from the 7 > T region simply do not get back to the 7 = 0 
surface in time to be recorded in the data. Whatever the explanation for the right 
boundary condition, T could be replaced by any T’ > T without affecting the solution 
of (1). This observation plus the fact that one normally has a rough estimate of c(7) 
means that one can at least estimate T. Hence we view T as known. It can then be 
normalized to one in (1) by letting z = 7/T; also let U(z) = u(7), C(z) = c(7), and 
w = To. It is easily verified that the resulting differential equation in U(z) is precisely 
the same as that in (l), but now takes place for 0 < z < 1. Hence, at least in many 
cases, we are justified in assuming that c(0) = 1 = T. 

II. RESULTS USING ui=eiwt 

For this choice for ui, it will be convenient to introduce the operator L, given by 
L,v = rY’ + &. Note that L,ui = 0. Proceeding as in the derivation of (3), we obtain 

j’ [u,L,u - uL,ui] = j: uiL,u = j’ eiwr(c’/c) u’ 

I 
1 = e’wrbeiwr + u:](c’/c) dt = 2iwu,(O; co). (5) 

0 

In [2] it was shown that if y E cl/c = O(E) < 1, in the L’ norm, then the term in (5) 
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involving u: is O(E)). Hence if y is indeed small, one is justified in dropping that term 
to get 

I 
1 

e2iw=y(7) d7 cz 2u,(O; w). (6) 
0 

Cearly (6) can be solved easily for y= c’/c via Fourier methods assuming data 
u,(O; o) are available for the required o values. Suppose, for simplicity of presen- 
tation, that we have reason to believe that y(0) and y(1) are “small,” so that it is 
reasonable to represent y by its Fourier sine series. (If not, one could use the cosine 
series or the full series and proceed accordingly.) By taking the imaginary part of (6) 
and setting w = ok = klr/2 we have 

i 
’ sin km y(r) dr = 2 Im u,(O; w,J = b,/2, 

0 
(7) 

where b, are the (approximate) Fourier coefficients of y. Finally we have 

y(t) = f b, sin km * - 5 b, sin km 

Since y = c’/c we have, from integration, 

c(z) = exp 4 5 Im u,(O; w,J( 1 - cos km)/klr . 
1 1 

(Formula (8) amounts to a discrete version of the approach of [l] in which the 

1 1 

N 

= 4 2 Im u,(O; ok) sin km. 
1 

T = co case was treated using Fourier transform.) 
In [2] it was shown that if (6) is solved for y the error due to ignoring the U, term 

in (5) is approximately d3/47r, where d is the L’ norm of y. For example, if we are 
seeking two-figure accuracy, this suggests that the relative error (in L’ norm) should 
be less than 0.01; i.e., d2/4n z d*/lO < 0.01 or 

d = 11 y/I < 0.3. (9) 

At least (9) should serve as a rule of thumb for how large y = c’/c can be for (8) to 
produce two figure results. In the following example we investigate the situation 
numerically. 

EXAMPLE 1. Consider the function 

c(7) = 1 + E sin*(xr/2) for 7 in [0, 11. 
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TABLE I 

Errors in Solving for 
c = 1 + E sin’(nr/2) via (8) 

E Max error Mean error 

0.3 0.001 0.0003 
0.7 0.011 0.0039 
0.8 0.016 0.0057 
1.0 0.030 0.0106 
2.0 0.194 0.0715 

“Time: 0.17 set per E. 

Since y = c’/c Z c’ = 42 sin m 5~ E, (9) suggests that we should be able to achieve 
two-figure results with E roughly as large as 0.3. The data u,(O; wk) were created 
artificially for this and subsequent examples by using the exact c in (2) to generate 
u(r; wk) and then U, = u - uI numerically. Then c is reconstructed by using, in this 
case, (8) above with N = 10. Table I summarizes the numerical results. For several 
values of E ranging between 0.3 and 2.0 two types of errors are listed: the “maximum 
error” over the 10 computed points and the “mean error” (which is the discrete 
version of the L’ error). Note that we achieved the desired two-figure accuracy for 
E < 0.8 ‘and lose it for E > 0.8; hence the indication given by (9) above is somewhat 
conservative in this instance. The results are illustrated graphically in Fig. 1. 

X 

FIG. 1. Graphs of c = 1 + E sin’(ns/2) for E = 0.7 and 2, and their approximations due to (8) 
denoted by +. 
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In the next section we refine the procedure just discussed in order to handle some 
cases in which y = c’/c is not “small.” 

III. RESULTS USING Ui = fi 8” 

One way of viewing the results of the last section is: if c varies little (cl/c small) 
then ui = eios is an effective estimate for 247; w); hence dropping the u, = u - ui term 
in (3) does little harm. We now look at a procedure which is effective in at least some 
cases in which c’/c is not small. We choose as ui the WKB approximation 

ui = &eiwr. 

As interpreted physically in Bremmer [5], if a wave eior for 7 < 0 enters the 
medium at 7 = 0, then fi eiwr is the approximation to u obtained by considering only 
the primary reflections and transmissions due to the inhomogeneous medium (c non- 
constant). From a mathematical point of view, fieior represents the first two terms 
in a large o expansion of solution U, whereas eiwr is the first term (e.g., see [6]). This 
comparison can be illustrated as follows. Consider the operator L of (2); recall that 
we seek a solution to Lu = 0. It is easy to show that 

L(eimT) = -iwy/c eiwr, 

L(&e’“‘) = l/2 c-“*(c”/c - 3/2 (c’/c)~) eior. 
(10) 

Viewing the right sides in (10) as “error,” we see that L(ei““) = O(w) while 
L(&e’“‘) = 0( 1) in w. In practice &eiwr is an excellent approximation to u for 
large w and is often a surprisingly good estimate for moderate and even “small” w. 
Equally important in the right sides of (10) are the expressions involving c. In the 
first of these note that y = c’/c appears, supporting the “small” y assumption of the 
last section. In the second equation y2 appears, as does a C” term. In particular the C” 
forewarns us that c may have to be quite smooth and that C” cannot be too large. 
This is borne out in the examples below. 

To obtain an integral equation we use (4) with ui = fieior and (lo), 

I 
1 

I 

1 
UiLUi = l/2 e2iwr(c”/c - 3/2 y’) d7 = -2iwu,(O; w). 

0 0 

Analogous to the approach of Section II, we choose w = ok = kn/2 for k = 1,2,... 
and take the real part to obtain 

I ’ cos kar(c”/c - 3/2 y’) d7 = 2klr Im u,(O; wk) = l/2 ck, (11) 
0 
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where the ak are the Fourier coefficients in 

C/‘/C - 3/2 (cl/c)’ = f ak cos km = S,(T). 
0 

Perhaps the most straightforward way to proceed is to truncate the series in (12) to 
give a trigonometric polynomial S,(r) and solve the resulting second-order 
differential equation numerically for c. In practice, however, this does not work unless 
c is exceptionally smooth. Note that the series in (12) is for a function involving c”; 
hence unless c is very smooth the series will converge very slowly, if at all. Ideally 
one would like to integrate the series in (12) once or twice term-by-term in order to 
improve its behavior. We now move in that direction. 

Observe that 

c/‘/c - 3/2 (c’/c)~ = (cl/c)’ - l/2 (c’/c)~ = y’ - l/2 y*. 

Using this in (11) we can write 

y’ cos km dz = l/2 y2 cos km dz 
I 

= 1/2/t, for k = 1, 2,..., (13) 

where ak = 4kn Im u,(O; wk) as in (11) and A, are the coefficients in 

y’ = f A, cos km. (14) 

The coefficient A,, = s y’ = y( 1) - y(O) re q uires special consideration, so to simplify 
the presentation we will, as we did in Section II, assume that c’(0) = c’( 1) = 0 and 
hence that A, = 0. We now define our procedure for iteratively computing the A, and 
ultimately c itself. We first compute yb by ignoring the ak correction in (13) and 
proceed as follows: 

ak cos km, 
1 

ye(r) = 2 a,/kn sin km, 
1 

q,(z) = exp 5 a,/(kr)2(1 - cos km) . 
1 I 

A comparison with the results of Section II shows that c0 is precisly that c computed 
by the ui = eiwr assumption. Using this as a starting point we iterate as follows: 
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1. Using current estimate for y in the right side of (13) compute the A, for 
k = 1, 2 ,..., N. 

2. Using the updated A,, compute y’, y, and c by (15) with A, replacing the uk. 

Steps 1 and 2 are repeated as necessary to achieve convergence of c to the desired 
accuracy. For example, when seeking two figure results we typically repeated these 
steps twice. Although a rigorous proof of convergence would no doubt require that y* 
be “small” compared to y’, we have had success when these two quantities were 
about the same size. 

We now consider two examples in which c will be reconstructed by the algorithm 
just described. As before, the data u,(O; w,J were constructed artificially by using the 
known c in (2). In the first of these two examples we again use the c of Example 1 
above for comparison. 

EXAMPLE 2. Consider the c of Example 1, 

c(t) = 1 + E sin*(a7/2). 

Recall that in Section II, we were able to reconstruct c only to one figure (about 10% 
error) as E approached 2. Table II compares the results of Section II (producing c,) to 
the results of two corrections (iterations) as outlined above (producing c,). In 
particular, we are able to achieve two-figure accuracy for E up to 2. In this example 
and the next we only corrected the first four uk in (13) as an economy measure 
(clearly for a reasonably smooth function the first several Fourier coefficients are the 
most significant). The computing times on a Burroughs 6800 was 0.17 set for c0 and 
1.72 set for c2. 

A second set of figures are included in Table II under the heading “undercorrecting 
in (13)” for the following reason. In our numerical work we have observed that in 
“correcting” the coefficients via (13), there has been a tendency to overcorrect. The 
actual coefficients are consistently somewhere between ak and A,, typically about 
0.2~~ + O.BA,. For that reason we can improve our results (plus save computing 
time) by putting a factor of, say, 0.8 in front of the correcting integral in (13) and 

TABLE11 

Errors in Solving for c = 1 + E sin*(nr/2) 

Two corrections via (13)-( 15) Undercorrecting in ( 13)b 

E Max error Mean error Max error Mean error 

0.8 0.009 0.0045 0.006 0.0030 
1.0 0.013 0.006 I 0.008 0.0037 
2.0 0.025 0.0143 0.012 0.0063 

’ Time: 1.72 set per E. 

‘Time: 0.98 set per E. 
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TABLE III 

Errors in Solving for the Ramp Function (16) 

co via (15)’ Correcting via (13)-( 15)* 

Max err Mean err Max err Mean err 

Undercorr. in (13)’ 

Max err Mean err 

0.129 0.05 1 0.038 0.019 0.03 1 0.014 

’ Time: 0.17 sec. 
‘Time: 3.87 sec. 
’ Time: 2.00 sec. 

only making one iteration. Since this phenomenon is not fully understood, we only 
make this passing remark and illustrate the numerical results. (It seems to suggest 
that for some reason a weighted average of eiwr and fieior is a superior Ui for these 
purposes.) 

Recall that in this development the factor c” plays a central role and, as pointed 
earlier, this forewarns one that c” will have to remain relatively small. In spite of this, 
we are able to handle the following c which is continuous but c’ is discontinuous; 
hence technically c” is a delta function. 

FIG. 2. Graph of the ramp function (16) and its approximation due to two corrections by (13)-( 15) 
denoted by +; and by (15) denoted by . . 
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EXAMPLE 3. Consider the “ramp” function: 

c(7)= 1 for 0 Q 7 < 0.2 

= 1 + 37 - 0.2) for 0.2 < 7 < 0.8 (16) 

= 2.5 for 0.8 <r< 1.0. 

In spite of the “corners” in this function, the first 10 terms of the Fourier 
expansion are again adequate for our purposes. Here we are able to ahieve almost 
two-figure results with two corrections (or with undercorrecting once). The results are 
summarized in Table III and shown graphically in Fig. 2. 

The above example pushes the algorithm of this section to its limit. For example, if 
c were discontinuous or if it were smooth but such that c” is large (say, greater 
than 10) the numerical results typically would be little better than those obtained by 
the simpler method of Section II. We shall give examples of this in the next section. 
Moreover, if more than two-figure accuracy is needed the approaches of the last two 
sections are usually not adequate. In such cases there seems to be little alternative to 
some form of iteration. We now turn to a straightforward iteration scheme. 

IV. ITERATION 

In preparation for iteration we return to (5) and put the u: term on the right: 

I 
1 

iw eZiWry d7 = 2iwu,(O; co) - ’ yui(7; w) eiwr d7. 
0 I 0 

Once again we will assume, for simplicity, that c’(O) = c’(1) = 0 so that the sine 
series of y is appropriate. Hence in the above equality if we divide out the iw, take the 
imaginary part, and set w = ok = k7c/2 we get 

I 

1 

0 
y sin km dz = 2 Im u,(O; ok) i -&- Re 1’ yuL(7; ok) eiknd2 dr 

0 

= l/2 b, + --& Re 1’ yul(7; ok) eiknr’2 dz 
0 

= l/2 B,; k= 1, 2,.... (17) 

In (17) the b, are the approximate Fourier coefficients of Section II and the B, 
represent the exact coefficients in 

y(7) = f B, sin km. 
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Of course the B, are not directly available since the integral in the right side of 
(17) involves the unknown y (both explicitly and implicitly through u: = ~i(t; ok ; c)); 
hence it will be necessary to iterate. We use the y and c of Section II as our starting 
values; i.e., first one computes 

N N 

ye(t) = 2 b, sin km = 4 c Im u,(O; ~0~) sin km, 
1 1 

47) = exp i 5 bk( 1 - cos km)/k] . 
1 

(18) 

One can then use (17) for iteration, particularly if c is very smooth. However, 
generally it is better to remove the y = c’/c from the computation in the right side by 
integration by parts. Writing the integrand as c’[(u~/c) eior] and integrating c’ and 
differentiating the second term leads, after considerable simplification, to this 
replacement of (17): 

I 

1 

I 

1 
y sin km dz = l/2 B, = -kn In c cos km dz 

0 0 

+ [(Im u + Re u’/w& cos wk 

+ (Re u - Im u’/wk) sin qlr=, . (19) 

The iteration procedure is therefore: 

1. Using most recent estimate for c and with wk = kz/2 for k = 1,2,..., N, 
numerically solve, for t < 1, the initial value problems 

(d/c) + (u:/c)u = 0, 

u(0; o/J = u,(O; q) + 1, (20) 

~‘(0; ok) = u;(O; ok) + io, = iuk[ 1 - u,(O; wk.]. 

Compute B, using this c and the computed values of u and u’ (at 7 = 1) in the right 
side of (19). 

2. Compute a new estimate of c and y by 

N 

y(7) = c B, sin km, 
1 

(21) 

c(7) = exp l/n ; B,(I - cos km)/k . 
1 1 

Note in (19) the data u,(O; ok) no longer appear explicitly; however, they are 
involved in the values of u and u’ at 7 = 1 since the data define the initial values of u 
in (20). We have recommended the solution of the initial value problem (20) rather 
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than the boundary value problem (2) for reason of economy. In practice we have 
typically needed to repeat Steps 1 and 2 three or four times in seeking two-figure 
accuracy in c (unless y = c’/c is small as in Section II, in which case iteration is 
unnecessary). 

The following examples illustrate the effectiveness of the above procedure for 
reconstructing c. Both examples are such that the less expensive methods of 
Sections II and III are not adequate. 

EXAMPLE 4. Consider 

c(r) = 1 + 2 sin’ n(r - 0.25) for 0.25 Q r < 0.75 

= 1 elsewhere. 

Although this c is relatively smooth, it does peak rather sharply near r = 0.5. Hence 
it causes difficulty for the approach of Section II since c’ = 47r sin 47r(r - 0.25) and 
consequently y = c’/c is not “small.” This is borne out in computation; e.g., ~~(0.5) = 
2.77 is off by about 8%. The method of Section III is not appropriate since C” = 
16~~ cos 4n(r - 0.25) is too large for the effective use of that approach; see Fig. 3. 

If we iterate as outlined above, (19)-(21), we are able to achieve the desired two- 
figure accuracy by taking N = 20 and doing three iterations. Again for efficiency we 
only correct the first five B, in Step 1. The results are illustrated in Fig. 3. Computing 

FIG. 3. Graph of c = 1 + 2 sin* 2747 - 0.25) and its approximation due to (19~(21) denoted by + ; 
and by (13)-(15) denoted by *. Errors in (19)-(21) solution are: max error = 0.039 and mean error = 
0.016. 
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f 

+ .+++cr... 
+ + + + +‘+ + + 

+ 
+ 

FIG. 4. Graph of step function and its approximation due to four iterations (19)-(21). Final 
iteration, denoted by +, was not smoothed. 

++I -,,+++,,,+ 
++ 

+ 

FIG. 5. Graph of step function and its approximation due to four iterations (19)-(21). Final 
iteration, denoted by +, was smoothed by (22). 
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time for this example was: 12.7 set (as compard to about 0.2 set to get c, and 2 set 
for the method of Section III when these methods are applicable). 

The final example offers a severe test of the robustness of the iteration scheme; c 
has a large discontinuity, hence c’ is a delta function. The Fourier series for c is 
extremely slow to converge (and the series for y is divergent; hence the abandoned 
iteration form (17) is especially unattractive). The proof of convergence of the 
iteration given in [2] does not apply in this case. Moreover, the Gibbs phenomenon 
in the series for such a c will eliminate any chance for a good uniform approximation 
to c. In spite of all this, we shall see that a reasonable reconstruction of c is still 
possible. 

EXAMPLE 5. Consider the step function 

c(r) = 1 for r ( 0.5 

=3 for ~20.5. 

The iteration (19)-(21) was applied with the following simple modification. In 
solving the differential equations in (20) some consideration should be given to the 
fact that the “old” c used is actually a truncated Fourier series of an approximation 
to the step function above. In particular, it will have unwelcome oscillations, 
especially near t = 0.5, which will give the differential equation solver some difftculty. 
We have found that the computer time can be reduced significantly (by over 60% in 
this example) and somewhat more accurate results can be obtained if the old c is 
smoothed before it is used in (20) and (19). The following simple smoothing scheme 
has proved very effective: 

45) + i [c(rj- 1) + 2c(rj) + Qj+ I)]; j = 2,..., N - 1. (22) 

Figure 4 illustrates the results of taking four iterations with N = 40 (but once again 
we only correct B I ,..., B,). The final c (denoted CJ was not smoothed in Fig. 4. 
Smoothing (22) can also be used to make the final c a bit more attractive when 
graphed; this is shown in Fig. 5. This smoothing can be demonstrated numerically as 
follows: consider the sub-intervals [0,0.4] and [0.6, l] of [0, l] which exclude the 
discontinuity at r = 0.5. On these sub-intervals the average (absolute value) error in 
the unsmoothed c, (of Fig. 4) is 0.025 whereas the average error for the smoothed cq 
(of Fig. 5) is 0.011. In short, smoothing allows us to reconstruct c to two figures 
(away from the discontinuity). The computer time was 12.0 set for the results shown 
in Fig. 4 or Fig. 5; without any smoothing the time was 31.6 sec. 

V. SUMMARY 

We have discussed three related but significantly different schemes for 
reconstructing c from the original problem (2) and data u,(O; w). In Section II we 
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used ui = eiwr as our first estimate of u, solution to (2); and demonstrated that if c 
does not vary much (cl/c small) then c can be reconstructed to perhaps two figures 
very cheaply (typically 0.1 to 0.2 set on a fairly slow large scale computer). In 
Section III we demonstrated that if c is smooth and if c’ does not vary too much (c” 
moderate) then the WKB estimate ui = &eiWT makes an effective first estimate. 
When applicable, using that approach one can reconstruct c to, typically, two-figure 
accuracy at modest cost (say 1 to 2 set) even if c’/c is not small. 

Unless the variance of c is quite small, both of the above procedures are unlikely to 
produce more than two-figure results since they do ignore a term of some significance 
in integral equation (3). In Section IV we discussed an interative scheme which is 
more generally applicable. It is considerably more expensive, with two-figure results 
typically taking 10 to 15 set (on problems out of the range of the other methods). 
Moreover, the iteration method is on a sound mathematical foundation as shown in 
[ 21, where convergence of the scheme was established. However, achieving, say, six- 
or eight-figure results would mean overcoming some computational hurdles that we 
have not dealt with. For example, this would entail solving (20) for large N and thus 
demand the numerical solution of a large number of highly oscillatory differential 
equation. We have not pursued these matters since in our applications (and most 
others) the data are not accurate enough to merit seeking such precision. 
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